Studies Directed Towards Total Syntheses of the Tropoloisoquinoline Alkaloids Grandirubrine and Imerubrine. Part 2. ${ }^{1}$ Thermolysis of 8,9-Dihydro-2-hydroxy-3,10,11,12-tetramethoxyisoquino[2,1-c][1,2,3]benzotriazin-7-ium Chloride: Competitive Modes of Cyclisation Leading to the Indeno[1,2,3-ij]isoquinoline (Azafluoranthene) Skeleton

Martin G. Banwell, ${ }^{*, a}$ Ernest Hamel, ${ }^{\boldsymbol{b}}$ Neil K. Ireland, ${ }^{\boldsymbol{a}}$ Maureen F. Mackay ${ }^{\boldsymbol{c}}$ and Algirdas K. Serelis ${ }^{d}$
a School of Chemistry, The University of Melbourne, Parkville, Victoria 3052, Australia
${ }^{\text {b }}$ Laboratory of Molecular Pharmacology, DTP, DCT. National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
${ }^{c}$ Department of Chemistry, La Trobe University, Bundoora, Victoria 3083, Australia
${ }^{d}$ Exploratory Chemistry Laboratories, ICI Dulux, McNaughtons Rd., Clayton, Victoria 3168, Australia

Thermolysis of the title compound 8 produced not only the expected azafluoranthene 7 but also the regioisomeric compound 23 and its dihydro counterpart 22. A mechanism for the formation of compounds 7, 22 and 23 from precursor 8 has been advanced. Reaction of salt 8 with copper bronze in aqueous sulfuric acid produced good yields of dihydroazafluoranthene 29 together with small amounts of the reduction product 30. The tubulin binding properties of the azafluoranthenes 7, 22, 23, 24 and 29 have been determined.

We have recently described ${ }^{2}$ the first fully regiocontrolled total synthesis of the potent anti-mitotic agent colchicine 4. Key features (Scheme 1) of this work were elaboration of the tricyclic compound 1 to the tetracyclic system 2 and treatment of the latter with trifluoroacetic acid which resulted in a biomimetic ring-expansion ${ }^{3}$ to give the colchicinoid 3. In principle, this approach to colchicine could be adapted to allow preparation of the related tropoloisoquinoline alkaloids grandirubrine 5^{4} and imerubrine 6^{5} which, despite at least one attempt, ${ }^{6}$ have not yet succumbed to total synthesis. Thus, retrosynthetic analysis (Scheme 2) of these compounds leads, initially, to the indeno $[1,2,3-i j]$ isoquinoline (azafluoroanthene) 7. It was anticipated that compound 7 could, in turn, be
produced by thermolysis of the dihydroisoquino[2,1$c][1,2,3]$ benzotriazin- 7 -ium salt 8 . This expectation was based on a series of reports ${ }^{7 a-e}$ that the azafluoranthene natural products 9-13 can be prepared via Pschorr or Pschorr-type cyclisations of the appropriate arenediazonium precursors. We now detail the preparation and thermolysis of the salt 8 and describe a hitherto unrecognised mode of cyclisation leading to the azafluoranthene skeleton.

Results and Discussion

Synthetic Studies.-The required salt 8 was prepared as shown in Scheme 3 from the known ${ }^{8}$ and readily available arene

Scheme 1 Reagents and conditions: i, $\mathrm{Tl}\left(\mathrm{NO}_{3}\right)_{3}$ (1.4 equiv.), $\mathrm{MeOH},-20^{\circ} \mathrm{C}, 0.5 \mathrm{~h}, 100 \%$; ii, $\mathrm{H}_{2} \mathrm{CSOMe}_{2}$ (1.1 equiv.), DMSO, $18{ }^{\circ} \mathrm{C}, 6 \mathrm{~h}, 75 \%$ at 82% conversion; iii, $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ (16 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 18{ }^{\circ} \mathrm{C}, 7 \mathrm{~h}, 89 \%$ at 53% conversion; iv, see ref. 2

Scheme 2

$9 \mathrm{R}=\mathrm{OMe}, \mathrm{R}^{\prime}=\mathrm{H}, \mathrm{X}=\mathrm{OMe}$
$10 \mathrm{R}=\mathrm{OH}, \mathrm{R}^{\prime}=\mathrm{H}, \mathrm{X}=\mathrm{OMe}$
$11 \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{X}=\mathrm{OMe}$
$12 \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{X}=\mathrm{H}$
$13 \mathrm{R}=\mathrm{OH}, \mathrm{R}^{\prime}=\mathrm{X}=\mathrm{H}$
14. The reaction sequence used was closely modelled on the synthesis of the related dihydroisoquino $[2,1-c][1,2,3]$ -benzotriazin-7-ium precursor to telitoxine 13. ${ }^{7 d}$ Thus, benzylation of the hydroxy group in compound 14 provided the corresponding ether 15 which was oxidised to acid 16 using $\mathrm{H}_{2} \mathrm{NSO}_{3} \mathrm{H}-\mathrm{NaClO}_{2} .^{7 d}$ Conversion of compound 16 into the related acid chloride 17 was readily accomplished using thionyl chloride and the latter compound was condensed with amine $18{ }^{1}$ under Schotten-Baumann conditions. The resulting amide 19 was subjected to Bischler-Napieralski cyclisation using phosphorus oxychloride and the 1-aryl-3,4-dihydroisoquinoline 20 was thereby obtained. Reaction of compound 20 with molecular hydrogen in the presence of palladium on carbon resulted in both removal of the benzyl protecting group and reduction of the nitro moiety to give compound 21. Diazotisation of amine 21 was accomplished under standard conditions and, after work-up, the crystalline salt $\mathbf{8}$ was isolated in 79% yield.

The spectral data obtained for compound $\mathbf{8}$ and all the intermediates in the reaction sequence leading to this compound were unremarkable and completely consistent with the assigned structures. Of particular relevance to the present discussion was the observation, throughout the series, of two one-proton singlets in the region $\delta 6.0-8.0$ of the appropriate ${ }^{1} \mathrm{H}$ NMR spectra. These resonances are assigned to the $1,4-$ related aromatic protons associated with ring-A of compounds 14-17, 19-21 and 8 (Scheme 3).

Thermolysis of the title compound 8 was effected in refluxing chlorobenzene-the same conditions as employed during the
analogous step in the synthesis of telitoxine $13 .{ }^{7 d}$ Concentration of the thermolysate and subjection of the resulting dark residue to preparative thin layer chromatography afforded three products in pure form. The chromatographically least mobile product was identified as the expected azafluoranthene 7 (5%) and the $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of this material showed, inter alia, two one-proton singlets at $\delta 7.46$ and 7.64 which are assigned to $7-\mathrm{H}$ and $10-\mathrm{H}$. In contrast, the aromatic regions in the ${ }^{1} \mathrm{H}$ NMR spectra of the other products revealed, in each case, two mutually coupled one-proton doublets ($J c a .8 \mathrm{~Hz}$) indicating that these protons are vicinally related to one another. This observation, when taken in conjunction with various other spectral features, led to the conclusion that these latter products were dihydroazafluoranthene $22(23 \%)$ and its dehydrogenated counterpart compound 23 (3%).

The structural relationship between tetracycles 22 and 23 was confirmed by dehydrogenating (using Pd on C in refluxing decalin) the former compound and thereby obtaining the latter in 40% yield. In addition, the $4,5,6,7,8$-penta-oxygenation pattern associated with these compounds was established by O methylation of the phenolic moiety of $\mathbf{2 3}$ using diazomethane in methanol. ${ }^{9}$ In this way the previously reported ${ }^{7 e}$ compound isoimelutine $\mathbf{2 4}$ was obtained in quantitative yield. This material proved to be identical (by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and IR spectroscopy) with an authentic sample ${ }^{7 e}$ of compound 24. Furthermore, compound $\mathbf{2 4}$ proved to be distinctly different from an authentic sample ${ }^{7 h}$ of imelutine 11.

A possible mechanism for the formation of azafluoranthene 22 from precursor $\mathbf{8}$ is shown in Scheme 4 and involves initial generation of the vinylogous diazoketone 25. Protonation of this latter species would deliver 26 (a protonated vinylogous diazoketone) which, when in conformation 26a, could cyclise with dinitrogen loss in the manner indicated to afford the tetracycle 27. Enolisation and deprotonation of this latter species (no particular order implied) would then deliver the observed product 22. In an alternate (competing) mode of cyclisation, compound 26 , reacting through conformer 26b, could form tetracycle 28 which would, in turn, lead to the dihydroazafluoranthene 29. Presumably, the observed and fully aromatic compounds $\mathbf{2 3}$ and $\mathbf{7}$ arise by aerial oxidation of 22

Scheme 3 Reagents and conditions: i, $\mathrm{PhCH}_{2} \mathrm{Cl}, \mathrm{DMF}, \mathrm{K}_{2} \mathrm{CO}_{3}, 150^{\circ} \mathrm{C}, 4 \mathrm{~h}, 80 \%$; ii, $\mathrm{NaClO}_{2}, \mathrm{H}_{2} \mathrm{NSO}_{3} \mathrm{H}, 18{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 78 \%$; iii, $\mathrm{SOCl}_{2}, 79{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$; iv, $\mathrm{CHCl}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{Na}_{2} \mathrm{CO}_{3}, 18^{\circ} \mathrm{C}, 24 \mathrm{~h}, 99^{\circ} \%$ (from 16); v, $\mathrm{POCl}_{3}, \mathrm{MeCN}, 82^{\circ} \mathrm{C}, 4 \mathrm{~h}, 99^{\circ} \%$ vi, $\mathrm{H}_{2}, \mathrm{Pd}$ on C, EtOH, trace $\mathrm{HCl}\left(\mathrm{aq}\right.$.), $50^{\circ} \mathrm{C}, 1 \mathrm{~h}, 90^{\circ} \%$; vii, $\mathrm{NaNO}_{2}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{O}, 18^{\circ} \mathrm{C}, 0.25 \mathrm{~h}$ then $\mathrm{NaOH}-\mathrm{HCl}, 79 \%$; viii, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}, 130^{\circ} \mathrm{C}, 1 \mathrm{~h}$ (see main text for yields); ix Pd on C , decalin, $170^{\circ} \mathrm{C}, 4 \mathrm{~h}$, 40%; x, $\mathrm{CH}_{2} \mathrm{~N}_{2}, \mathrm{MeOH}, 18^{\circ} \mathrm{C}, 72 \mathrm{~h}, 100 \%$

Scheme 4 Reagents and conditions: i, $\mathrm{PhCl}, 130^{\circ} \mathrm{C}, 1 \mathrm{~h}$; ii, aerial oxidation
and 29 respectively. There is some precedent for the key cyclisation steps proposed above in that protonated diazoketones are powerful electrophiles that readily attack pendant arene rings. ${ }^{10}$

The product distribution associated with the thermolysis reaction was not dependent on acid concentration since running the reaction in the presence of catalytic amounts of toluene-p-sulfonic acid or stoichiometric amounts of the weakly nucleophilic base 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) failed to change matters to any significant extent.

In an attempt to obtain higher yields of the compound 7 (the azafluoranthene required in our proposed biomimetic approach to the alkaloids imelutine and grandirubrine) salt 8 was subjected to reaction with copper-bronze and aqueous sulfuric acid in refluxing methanol. After work-up, the 2,3-dihydro derivative, 29 , of compound 7 was isolated (ca. 20% yield) but the major product ($c a .60 \%$) of the reaction proved to be the uncyclised compound 30 . In contrast, when methanol was omitted as a reaction solvent (see Experimental section for details) a 67% yield of compound 29 was obtained and only minor quantities (6%) of the reduction product 30 were isolated. One possible interpretation of these results is that in the former
reaction methanol is acting as a hydrogen atom donor and thus facilitating the reduction process leading to the undesired product 30.

The structures of compounds 29 and 30 followed from spectral data. In particular, the ${ }^{1} \mathrm{H}$ NMR spectrum of 30 displayed, inter alia, the three-proton spin-system expected for the tri-substituted A-ring as well as a one-proton singlet at $\delta 6.69$ which is assigned to the isolated proton of the trimethoxyaryl moiety. In contrast, the analogous spectrum of compound 29 displayed only two one-proton singlets in the aromatic region. Final confirmation of the structure of dihydroazafluoranthene 29 came from a single-crystal X-ray analysis (Fig. 1). Furthermore, the structural and chemical (Scheme 4) relationships between compounds 29 and 7 were established by heating a solution of the former compound in chlorobenzene at reflux and thereby obtaining quantities of the latter (ca. 100% at 16% conversion as determined by 400 MHz ${ }^{1} \mathrm{H}$ NMR analysis).

Efforts are currently underway in these laboratories to effect conversion of compound 7 or its 2,3-dihydro derivative 29 into the natural product imerubrine using the strategy defined in Scheme 2. Results will be reported in due course.

30

31

32

Fig. 1 ORTEP drawing of compound 29 (Thermal ellipsoids are drawn at the 50% probability level and hydrogen atoms are represented by spheres of arbitrary radius. The C symbol for the carbon atoms has been omitted).

Tubulin Binding Studies.-Our earlier studies ${ }^{11}$ on structureactivity relationships amongst analogues of allocolchicine 31 and N -acetylcolchicinol $3-\mathrm{O}$-methyl ether 32 prompted us to examine the tubulin binding properties of compounds $7,22,23$, 24 and 29. However, none of these compounds acted as an inhibitor of tubulin polymerisation even at concentrations as high as $100 \mu \mathrm{~mol} \mathrm{dm}^{-3}$.
The interaction of tubulin with colchicine 4 has been studied extensively ${ }^{11}$ and the existence of two partial binding sites on the protein has been established, one for the trimethoxyphenyl ring and one for the tropolone methyl ether ring. Furthermore, it is frequently argued that initial binding of 4 occurs via a skewed conformation (with the dihedral angle between the Aand C-rings being perhaps as high as 60°) and this initial complex then isomerises to a more stable one involving a near planar relationship between the troponoid and aryl rings. Analogous arguments can be advanced to account for the high activities of compounds 31 and 32 . On this basis the absence of tubulin binding activity amongst compounds 7, 22, 23, 24 and 29 could arise, at least in part, from the complete lack of rotation about the axis linking the two oxygenated ring systems within these molecules.

X-Ray Structure of Compound 29.-The molecular conformation is illustrated in Fig. 1. The tetracyclic ring atoms and the five associated oxygen atoms lie in a plane with a r.m.d.s. of
$0.06 \AA$ [$\delta_{\text {max }} 0.15 \AA$ for $\left.\mathrm{C}(3)\right]$. The methoxy group at $\mathrm{C}(8)$ lies close to the ring plane [torsional angle $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{O}(8)-\mathrm{C}\left(8^{\prime}\right)$ $\left.11.0(7)^{\circ}\right]$. Those attached to ring A are nearly orthogonal to the plane as reflected in the torsional angles $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{O}(4)-\mathrm{C}\left(4^{\prime}\right)$ $73.4(6)^{\circ}, \mathrm{C}(6)-\mathrm{C}(5)-\mathrm{O}(5)-\mathrm{C}\left(5^{\prime}\right)-76.6(6)^{\circ}$ and $\mathrm{C}(5)-\mathrm{C}(6)-$ $\mathrm{O}(6)-\mathrm{C}\left(6^{\prime}\right)-78.4(6)^{\circ}$ with the group at $\mathrm{C}(5)$ being directed in the opposite direction to those at $\mathrm{C}(4)$ and $\mathrm{C}(6)$. The hydroxy substituent at $C(9)$ lies within its associated ring plane [torsional angle $\left.\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{O}(9)-\mathrm{H}(9)-3(3)^{\circ}\right]$ and forms an intermolecular hydrogen bond with the ring nitrogen of an adjacent molecule $\left(-x, \frac{1}{2}+y, \frac{1}{2}-z\right.$). The $\mathrm{O}(9) \cdots \mathrm{N}(1)$, $\mathrm{O}(9)-\mathrm{H}(9)$ and $\mathrm{H}(9) \cdots \mathrm{N}(1)$ distances are $2.676(5), 1.05(6)$ and $1.66(6) \AA$ respectively with the angle $\mathrm{O}(9)-\mathrm{H}(9) \cdots \mathrm{N}(1)$ 164(4) ${ }^{\circ}$. These interactions link the molecules into infinite spirals along the crystal b axis.

Experimental

The $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of compound 24 was recorded on a Bruker AMX-500 by Dr. R. Norton and associates (Victorian College of Pharmacy) while the 400 MHz ${ }^{1} \mathrm{H}$ NMR spectra of compounds 7 and 24 were recorded on a JEOL-GX400 spectrometer. In all other cases, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained on a Varian Unity 300 NMR spectrometer. All NMR spectra were recorded using CDCl_{3} as solvent unless otherwise specified. Other general experimental details have been reported elsewhere. ${ }^{12}$

5-Benzyloxy-4-methoxy-2-nitrobenzaldehyde 15.-A solution of 2-nitroisovanillin $14^{8}(15 \mathrm{~g}, 76 \mathrm{mmol})$ in anhydrous dimethylformamide ($300 \mathrm{~cm}^{3}$) was treated with potassium carbonate ($13.6 \mathrm{~g}, 98 \mathrm{mmol}$) and benzyl chloride ($11.9 \mathrm{~g}, 94$ mmol) and the resulting suspension heated at reflux under nitrogen for 4 h . The cooled reaction mixture was poured into water ($300 \mathrm{~cm}^{3}$) and the aqueous layer was extracted with dichloromethane $\left(3 \times 150 \mathrm{~cm}^{3}\right)$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, then filtered and concentrated under reduced pressure to give a pale yellow solid which was recrystallised (methanol) to afford the title compound 15 (17.37 g, 80%) as pale yellow prisms, m.p. $132-133{ }^{\circ} \mathrm{C}$ (Found: M^{+}, 287.0803; C, 62.8; H, 4.8; N, 4.9. $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{5}$ requires M^{+}, 287.0794; C, 62.7; H, 4.6; N, 4.9\%); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1680,1573, ~}$ $1510,1336,1280,1214$ and $1060 ; \delta_{\mathrm{H}} 10.43$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CHO}$), 7.63 (s , $1 \mathrm{H}, 3-\mathrm{H}$), 7.49 (s, $1 \mathrm{H}, 6-\mathrm{H}$), 7.47-7.37 (complex m, $5-\mathrm{H}$, $\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), 5.27 (s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$) and 4.03 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$); $\delta_{\mathrm{C}} 187.5,152.9,152.4,144.0,135.0,128.6,127.6,125.3,111.4$, 107.4, 71.4 and $56.7 ; m / z(15 \mathrm{eV})(\%) 181(1)\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}\right)$, 166 (1) ($\left.\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}-\mathrm{CH}_{3}\right)$ and $91(100)\left(\mathrm{C}_{7} \mathrm{H}_{7}{ }^{+}\right)$.

5-Benzyloxy-4-methoxy-2-nitrobenzoic Acid 16.-A suspension of the aldehyde $15(16.0 \mathrm{~g}, 55 \mathrm{mmol})$ in tert-butyl alcohol ($62 \mathrm{~cm}^{3}$) and water ($31 \mathrm{~cm}^{3}$) was treated with sulfamic acid (5.58 $\mathrm{g}, 57.5 \mathrm{mmol}$) and then in a dropwise fashion with sodium chlorite ($3.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ aqueous solution; $20 \mathrm{~cm}^{3}, 70 \mathrm{mmol}$). The resulting mixture was stirred for a further 2 h before being poured into diethyl ether ($100 \mathrm{~cm}^{3}$) and washed with water
$\left(2 \times 100 \mathrm{~cm}^{3}\right)$. The ether layer was washed with sodium hydrogen carbonate (saturated aqueous solution; $5 \times 100 \mathrm{~cm}^{3}$) and the combined basic extracts were acidified with $\mathrm{HCl}(2 \mathrm{~mol}$ dm^{-3} aqueous solution) and the resulting solid removed by filtration. The solid was dissolved in acetone ($200 \mathrm{~cm}^{3}$), dried (MgSO_{4}), filtered and concentrated under reduced pressure to a yellow solid which was recrystallised (toluene-hexane) to yield the title compound $16(13.2 \mathrm{~g}, 78 \%)$ as fine powdery crystals, m.p. 189-190 ${ }^{\circ} \mathrm{C}$ (Found: C, 59.5; H, 4.5; N, 4.5. $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{6}$ requires $\mathrm{C}, 59.4 ; \mathrm{H}, 4.3 ; \mathrm{N}, 4.6 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3091,1707$, $1692,1517,1344,1281$ and $1207 ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 7.54(\mathrm{~s}, 1 \mathrm{H}, 3-$ H), 7.52 (s, $1 \mathrm{H}, 6-\mathrm{H}$), 7.45-7.34 (complex m, $5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), $5.32\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$ and $4.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)(\mathrm{OH}$ not observed); $\delta_{\mathrm{C}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 166.5,152.1,151.8,143.3,137.0$, 129.3, 129.0, 128.6, 121.5, 113.9, 108.1, 71.7 and $56.9 ; m / z$ $(30 \mathrm{eV})(\%) 303(1)\left(\mathrm{M}^{+}\right), 269(2)$ and $91(100)\left(\mathrm{C}_{7} \mathrm{H}_{7}{ }^{+}\right)$.

5-Benzyloxy-4-methoxy-2-nitro-N-[2'-(2", $3^{\prime \prime}, 4^{\prime \prime}$ - [trimethoxyphenyl)ethyl]benzamide 19.-A solution of the acid 16 (9.6 g , 31.7 mmol) in thionyl chloride ($50 \mathrm{~cm}^{3}$) was stirred for 1 h at reflux and then concentrated under reduced pressure. The resulting dark-brown acid chloride 17 was dissolved in anhydrous chloroform ($100 \mathrm{~cm}^{3}$) and added in a dropwise fashion to a vigorously stirred mixture of amine $18(15.0 \mathrm{~g}$, 72 mmol), potassium carbonate ($10.3 \mathrm{~g}, 68 \mathrm{mmol}$), water ($100 \mathrm{~cm}^{3}$) and chloroform ($80 \mathrm{~cm}^{3}$) maintained under a nitrogen atmosphere. On completion of addition the resultant orange-brown solution was stirred for a further 24 h before being poured onto water $\left(200 \mathrm{~cm}^{3}\right)$. The phases were separated and the organic phase was washed with $\mathrm{HCl}\left(1 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ aqueous solution; $2 \times 100 \mathrm{~cm}^{3}$) and sodium hydrogen carbonate (saturated aqueous solution; $3 \times 50 \mathrm{~cm}^{3}$) before being dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to a pale tan solid. This material was recrystallised (chloroform-hexane) to afford the title compound $19(15.6 \mathrm{~g}$, 99% based on acid 16) as off-white prisms, m.p. $155-155.5^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}, 496.1853$; C, 63.1; H, 5.7; N, 5.5. $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{8}$ requires $\left.M^{+}, 496.1845 ; \mathrm{C}, 62.9 ; \mathrm{H}, 5.7 ; \mathrm{N}, 5.6 \%\right) ; \nu_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $3276,2938,1639,1522,1493,1347,1273,1212$ and $1101 ; \delta_{\mathrm{H}} 7.60$ (s, 1 H, 3-H), 7.44-7.32 (complex m, $5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), 6.92 (s, 1 $\mathrm{H}, 6-\mathrm{H}), 6.89$ (d, $\left.J 8.3,1 \mathrm{H}, 6^{\prime \prime}-\mathrm{H}\right), 6.62$, (d, $\left.J 8.3,1 \mathrm{H}, 5^{\prime \prime}-\mathrm{H}\right)$, $6.00(\mathrm{t}, J 5.4,1 \mathrm{H}, \mathrm{NH}), 5.18\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.95(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$), 3.83 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.82(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.65\left(\mathrm{td}, J 6.4\right.$ and $\left.5.4,2 \mathrm{H}, 1^{\prime}-\mathrm{H}\right)$ and $2.87(\mathrm{t}, J 6.4,2 \mathrm{H}$, $\left.2^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{c}} 166.4,152.6,152.4,151.8,149.7,142.2,138.9,135.2$, $128.7,128.4,127.5,127.3,124.6,124.5,111.9,107.5,71.3,61.0$, 60.6, 56.4, 55.9, 41.1 and 29.4 (one signal obscured); $m / z(70 \mathrm{eV}$) $(\%) 496(3)\left(\mathrm{M}^{+}\right), 466(3)\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{O}\right), 375(43), 194$ (85), $166(53)$ and $91(100)\left(\mathrm{C}_{7} \mathrm{H}_{7}^{+}\right)$.

1-(3'-Benzyloxy-4'-methoxy-6'-nitrophenyl)-5,6,7-trimeth-

 oxy-3,4-dihydroisoquinoline 20.-A solution of amide 19 $(10.6 \mathrm{~g}, 21.4 \mathrm{mmol})$ in anhydrous acetonitrile $\left(55 \mathrm{~cm}^{3}\right)$ was treated in a dropwise fashion with phosphorous oxychloride (30 cm^{3}) and the resulting solution heated at reflux for 4 h . The resulting brown solution was cooled and concentrated under reduced pressure, and the residue dissolved in dichloromethane ($50 \mathrm{~cm}^{3}$) and washed with sodium hydrogen carbonate (saturated aqueous solution; $3 \times 50 \mathrm{~cm}^{3}$). The organic phase was dried (MgSO_{4}), filtered and concentrated under reduced pressure to a pale oil. Subjection of this material to flash chromatography (7:1 dichloromethane-ethyl acetate elution) afforded, after concentration of the appropriate fractions (R_{f} 0.4), a pale yellow solid which was recrystallised (chloroformhexane) to give the title compound $20(10.1 \mathrm{~g}, 99 \%)$ as pale yellow needles, m.p. $148-149^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}, 478.1746$; C , 65.5; $\mathrm{H}, 5.75$; $\mathrm{N}, 5.8 . \mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{7}$ requires $M^{+}, 478.1740$; C , 65.3; H, 5.5; N, 5.85\%); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2940,2854,1518,1407$,1345, 1285, 1261, 1221 and $1110 ; \delta_{\mathrm{H}} 7.70\left(\mathrm{~s}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.44-7.33$ (complex m, $5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} H_{5}$), 7.03 ($\mathrm{s}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}$), 6.07 ($\mathrm{s}, 1 \mathrm{H}, 8-$ H), $5.22\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.90(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.88(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right)$ and $2.87(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}) ; \delta_{\mathrm{C}} 164.5,152.6,151.7$, 150.1, $149.4,144.7,140.9,135.3,129.3,128.7,128.4,127.5,124.4$, $124.3,114.0,107.6,105.6,71.3,61.0,60.9,56.4,56.2,47.5$ and $18.8 ; m / z(70 \mathrm{eV})(\%) 478(2.4)\left(\mathrm{M}^{+}\right), 446(23)\left(\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{OH}\right)$ and $355(100)\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}-\mathrm{CH}_{3} \mathrm{OH}\right)$.

1-(2'-Amino-5'-hydroxy-4'-methoxyphenyl)-5,6,7-tri-methoxy-3,4-dihydroisoquinoline 21.-A solution of compound $20(9.9 \mathrm{~g}, 20.7 \mathrm{mmol})$ in ethanol $\left(100 \mathrm{~cm}^{3}\right)$ was treated with $\mathrm{HCl}\left(10 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ aqueous solution; $\left.15 \mathrm{~cm}^{3}\right)$ and then 5% palladium on carbon (500 mg). The resulting mixture was stirred at $50^{\circ} \mathrm{C}$ under 1 atm of dihydrogen until uptake of the gas had ceased (ca. 1 h). The reaction mixture was filtered through Celite and the filtrate poured into sodium hydrogen carbonate (saturated aqueous solution; $200 \mathrm{~cm}^{3}$). The resulting solution was extracted with dichloromethane ($3 \times 150 \mathrm{~cm}^{3}$) and the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to afford the title amine $21\left(6.5 \mathrm{~g}, 90 \%\right.$) as a yellow foam (Found: $\mathrm{M}^{+}, 358.1531$. $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires $M^{+}, 358.1529$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3433$, 2936, 2837, 1555, 1513, 1453, 1341 and $1195 ; \delta_{\mathrm{H}} 6.76$ ($\mathrm{s}, 1 \mathrm{H}, 3^{\prime}-$ H or $\left.6^{\prime}-\mathrm{H}\right), 6.68\left(\mathrm{~s}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right.$, or $\left.3^{\prime}-\mathrm{H}\right), 6.31(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{H}), 4.60$ (br s, $3 \mathrm{H}, \mathrm{NH}_{2}$ and OH), 3.93 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.88(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$), 3.73 (partially obscured $\mathrm{t}, J 7.0$, $2 \mathrm{H}, 3-\mathrm{H}) 3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$ and $2.67(\mathrm{t}, J 7.0,2 \mathrm{H}, 4-\mathrm{H}) ; \delta_{\mathrm{C}}$ $166.4,151.2,149.5,148.1,144.2,141.0,136.8,125.4,124.6$, $116.8,114.1,108.6,100.2,61.0,60.9,56.2,55.7,46.7$ and 19.0 ; $m / z(30 \mathrm{eV})(\%) 358(36)\left(\mathrm{M}^{+}\right), 357(100)\left(\mathrm{M}^{+}-\mathrm{H}\right)$ and 327 (28) $\left(\mathrm{M}^{+}-\mathrm{OCH}_{3}\right)$.

8,9-Dihydro-2-hydroxy-3,10,11,12-tetramethoxyisoquino[2,1c] [1,2,3]benzotriazin-7-ium Chloride 8.-A solution of compound $21(6.5 \mathrm{~g}, 18.7 \mathrm{mmol})$ in sulfuric acid ($1 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous solution; $200 \mathrm{~cm}^{3}$) was cooled to $0^{\circ} \mathrm{C}$ and treated in a dropwise fashion with a solution of sodium nitrite $(2.6 \mathrm{~g}, 37.6$ $\mathrm{mmol})$ in water $\left(30 \mathrm{~cm}^{3}\right)$. The reaction mixture was stirred for 15 min , basified with sodium hydroxide ($1 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous solution), and the resulting blood red solution then extracted with chloroform ($5 \times 100 \mathrm{~cm}^{3}$). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a red solid. Treatment of this solid with hydrochloric acid ($10 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ aqueous solution; $2 \mathrm{~cm}^{3}$) afforded a pale yellow solid which was recrystallised (methanol-diethyl ether) to give the title salt $8(6.0 \mathrm{~g}, 79 \%$) as pale orange needles, m.p. $185^{\circ} \mathrm{C}$ (decomposition) (Found: M^{+} $-\mathrm{N}_{2}-\mathrm{HCl}$, 341.1263. $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{CIN}_{3} \mathrm{O}_{5}$ requires $\mathrm{M}^{+}-\mathrm{N}_{2}{ }^{-}$ $\left.\mathrm{HCl}, 341.1263^{*}\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2919,1586,1509,1460,1404$, 1326 and 1284; $\delta_{\mathrm{H}} 8.95(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}), 4.99$ (t, J6.4, $2 \mathrm{H}, 8-\mathrm{H}$), $4.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.16\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $4.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$ and $3.32(\mathrm{t}, J 6.4,2 \mathrm{H}$, 9-H) (OH not observed); $\delta_{\mathrm{C}} 160.6,159.9,153.8,149.8,149.7$, 147.6, 142.1, 125.0, 117.7, 112.8, 111.6, 109.4, 108.7, 61.5, 61.3, 57.4 (two overlapping signals), 53.5 and $20.5 ; \mathrm{m} / \mathrm{z}(70 \mathrm{eV}$, heated) (\%) $341(100)\left(\mathrm{M}^{+}-\mathrm{N}_{2}-\mathrm{HCl}\right), 326(53)\left(\mathrm{M}^{+}-\mathrm{N}_{2}{ }^{-}\right.$ $\mathrm{HCl}^{-} \mathrm{CH}_{3}$) and 311 (40).

Thermolysis of Salt 8. Formation of the Azafluoranthenes 7, 22

[^0]and 23.-A solution of salt $8(200 \mathrm{mg}, 0.49 \mathrm{mmol})$ in chlorobenzene ($150 \mathrm{~cm}^{3}$) was heated at reflux under nitrogen for 1 h and then cooled and concentrated under reduced pressure. The resulting black oil was dissolved in dichloromethane ($20 \mathrm{~cm}^{3}$) and washed with sodium hydrogen carbonate (saturated aqueous solution; $3 \times 20 \mathrm{~cm}^{3}$) and water (1×20 $\left.\mathrm{cm}^{3}\right)$. The organic phase was then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a brown oil. This material was subjected to preparative TLC (98:2 dichloromethane-methanol elution) and three major and chromophoric bands A, B, and $\mathrm{C}\left(R_{\mathrm{f}} 0.4,0.2\right.$, and 0.15 respectively) were thereby obtained.
Extraction ($1: 1$ chloroform-methanol) of band A afforded 4,5,6,8-tetramethoxyindeno[1,2,3-ij]isoquinolin-7-ol 23 (6 mg, 3%) as an orange oil (Found: M^{+}, 339.1111. $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{5}$ requires $M^{+}, 339.1107$); $v_{\text {max }}(\mathrm{NaCl}) / \mathrm{cm}^{-1} 3312,2940,2846$, $1580,1407,1384,1309,1290,1241,1209$ and $1099 ; \delta_{\mathrm{H}} 8.80(\mathrm{~s}, 1$ $\mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchangeable, OH), 8.55 (d, $J 5.9,1 \mathrm{H}, 2-\mathrm{H}$), $7.60(\mathrm{~d}, J$ $8.0,1 \mathrm{H}, 10-\mathrm{H}), 7.55(\mathrm{~d}, J 5.9,1 \mathrm{H}, 3-\mathrm{H}), 6.87(\mathrm{~d}, J 8.0,1 \mathrm{H}$, $9-\mathrm{H}$), 4.22 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 4.12 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 4.05 ($\mathrm{s}, 3 \mathrm{H}$, OCH_{3}) and $4.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; \delta_{\mathrm{C}} 159.5,150.7,149.4,148.6$, 147.2, 145.2, 142.3, 131.7, 126.6, 123.7, 123.5, 120.9,114.8, 112.4, $111.1,63.3,62.1,61.4$ and $56.4 ; m / z(70 \mathrm{eV})(\%) 339(100)\left(\mathrm{M}^{+}\right)$, $324(28)\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right), 308(17)\left(\mathrm{M}^{+}-\mathrm{OCH}_{3}\right)$ and 194 (51).
Extraction ($1: 1$ chloroform-methanol) of band B afforded 4,5,6,8-tetramethoxy-2,3-dihydroindeno [1,2,3-ij]isoquinolin-7ol $22(38 \mathrm{mg}, 23 \%)$ as a dark orange oil (Found: $\mathrm{M}^{+}, 341.1267$. $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{5}$ requires $M^{+}, 341.1263$); $v_{\text {max }}(\mathrm{NaCl}) / \mathrm{cm}^{-1} 3276$, 2939, 2839, 1513, 1478, 1453, 1405, 1379, 1340, 1238 and 1087; $\delta_{\mathrm{H}} 9.04\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, OH$), 7.35(\mathrm{~d}, J 8.1,1 \mathrm{H}, 10-$ H), 6.76 (d, $J 8.1,1 \mathrm{H}, 9-\mathrm{H}), 4.16(\mathrm{t}, J 8.1,2 \mathrm{H}, 2-\mathrm{H}), 4.09(\mathrm{~s}, 3$ $\left.\mathrm{H}, \mathrm{OCH}_{3}\right), 3.95\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$ and 2.77 (t, J, 8.1, 2 H, 3-H); $\delta_{\mathrm{C}} 164.2,151.9,151.4,149.4,144.4$, 141.4, 129.5, 126.3, 124.2, 123.7, 123.2, 115.2, 110.5, 62.7, 61.1, 61.0, 56.3, 49.2 and $18.2 ; m / z(70 \mathrm{eV})(\%) 341(100)\left(\mathrm{M}^{+}\right), 326$ (18) $\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right)$ and $310(7)\left(\mathrm{M}^{+}-\mathrm{OCH}_{3}\right)$.

Extraction ($1: 1$ chloroform-methanol) of band C afforded 4,5,6,8-tetramethoxyindeno $[1,2,3$-ij]isoquinolin- 9 -ol $7(8 \mathrm{mg}$, 5%) as a pale orange solid, m.p. $170-171^{\circ} \mathrm{C}$ (Found: M^{+}, 339.1104. $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{5}$ requires M^{+}, 339.1104); $v_{\max }(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 2923,2851,1582,1461,1375,1260,1201,1077$ and 1016; $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 8.54(\mathrm{~d}, J 6.0,1 \mathrm{H}, 2-\mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}, 7-\mathrm{H}$ or $10-$ H), $7.56(\mathrm{~d}, J 6.0,1 \mathrm{H}, 3-\mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}, 10-\mathrm{H}$ or $7-\mathrm{H}), 5.85(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchangeable, OH), $4.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.10(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 4.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$ and $4.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; \delta_{\mathrm{C}} 159.4$, $150.4,149.6,148.8,148.1,145.6,144.6,132.1,131.4,125.8$, $123.5,122.1,112.8,108.9,106.8,62.1$, 61.4 (two peaks overlapping) and $56.3 ; m / z(70 \mathrm{eV})(\%) 339(100)\left(\mathrm{M}^{+}\right)$and 324 (41) $\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right)$.

Dehydrogenation of 4,5,6,8-Tetramethoxy-2,3-dihydroindeno $[1,2,3-\mathrm{ij}]$ isoquinolin-7-ol 22. Formation of 4,5,6,8Tetramethoxyindeno $[1,2,3-\mathrm{ij}]$ isoquinolin- 7 -ol 23.- 5% Palladium on carbon (40 mg) was added to a solution of the azafluoranthene $22(40 \mathrm{mg}, 0.117 \mathrm{mmol})$ in decalin $\left(10 \mathrm{~cm}^{3}\right)$ and the resulting mixture heated at $170^{\circ} \mathrm{C}$ for 4.0 h . The cooled reaction mixture was filtered through a pad of Celite (dichloromethane elution) and the combined filtrates were concentrated under reduced pressure. The orange residue was subjected to preparative TLC ($98: 2$ dichloromethane-methanol elution) and the single major and chromophoric band ($R_{\mathrm{f}} 0.4$) thereby obtained was extracted ($1: 1$ chloroform-methanol) to give 4,5,6,8-tetramethoxyindeno[1,2,3-ij] isoquinolin-7-ol 23 (16 $\mathrm{mg}, 40 \%$), identical in all respects with the material obtained earlier.

4,5,6,7,8-Pentamethoxyindeno[1,2,3-ij]isoquinoline(Isoimelutine) 24.-A solution of compound $23(2 \mathrm{mg}, 0.006 \mathrm{mmol})$ in
methanol $\left(2 \mathrm{~cm}^{3}\right)$ was treated with an excess of ethereal diazomethane and the resulting solution stirred at room temperature for 72 h . The resulting pale yellow solution was treated with acetic acid ($1 \mathrm{~cm}^{3}$) and then the whole reaction mixture was concentrated under reduced pressure to give isoimelutine 24 ($2 \mathrm{mg}, 100 \%$) as a pale yellow oil (Found: M^{+} 353.1266. $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{5}$ requires $\mathrm{M}^{+}, 353.1263$); $v_{\text {max }}(\mathrm{NaCl}) /$ $\mathrm{cm}^{-1} 2928,1586,1468,1416,1396,1309,1266,1221$ and 1016; $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 8.54(\mathrm{~d}, J 5.9,1 \mathrm{H}, 2-\mathrm{H}), 7.83(\mathrm{~d}, J 8.3,1 \mathrm{H}, 10-$ H), 7.58 (d, $J 5.9,1 \mathrm{H}, 3-\mathrm{H}), 6.93(\mathrm{~d}, J 8.3,1 \mathrm{H}, 9-\mathrm{H}), 4.12(\mathrm{~s}, 3$ $\left.\mathrm{H}, \mathrm{OCH}_{3}\right), 4.07\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 3.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$ and $3.98(7)\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; \delta_{\mathrm{C}}(125 \mathrm{MHz}) 158.5,155.9,152.4,150.5$, $149.2,145.8,144.4,132.3,131.8,126.3,124.2,121.4,118.2$, $112.5,110.8,63.5,62.1,61.9,61.5$ and $56.2 ; m / z(70 \mathrm{eV})(\%)$ $353(100)\left(\mathrm{M}^{+}\right)$and $338(7)\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right)$.

Reaction of Salt $\mathbf{8}$ with Copper-Bronze and Sulfuric Acid: Formation of Compounds 29 and 30.-A solution of the triazine salt $8(2.0 \mathrm{~g}, 4.94 \mathrm{mmol})$ in sulfuric acid $\left(2 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ aqueous solution; $100 \mathrm{~cm}^{3}$) was warmed to $50^{\circ} \mathrm{C}$ and then treated with an excess of copper-bronze (10 g). The reaction mixture was heated at reflux for 1 h and the resulting dark solution then cooled, filtered through a pad of Celite (dichloromethane elution) and the filtrate poured into water $\left(20 \mathrm{~cm}^{3}\right)$. The aqueous phase was basified with sodium hydrogen carbonate (saturated aqueous solution) and extracted with dichloromethane ($3 \times 50 \mathrm{~cm}^{3}$). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a brown oil which was dissolved in dichloromethane and subjected to chromatographic filtration (1 cm deep pad of TLC grade silica, ethyl acetate elution). The filtrate was concentrated under reduced pressure to a dark orange solid which was subjected to column chromatography ($230-400$ mesh Kieselgel, gradient elution from 1:99 ethanol-dichloromethane to 4:96 ethanol-dichloromethane).
Concentration of the fractions containing the more mobile component afforded an orange solid which was recrystallised (chloroform-hexane) to afford 4,5,6,8-tetramethoxy-2,3dihydroindeno $[1,2,3$-ij]isoquinolin-9-ol $29(1.11 \mathrm{~g}, 67 \%)$ as lustrous yellow-brown plates, m.p. $223-224^{\circ} \mathrm{C}\left(R_{\mathrm{f}} 0.3\right.$ in 3:97 ethanol-dichloromethane) (Found: $\mathbf{M}^{+}, 341.1267$; C , 66.5; $\mathrm{H}, 5.9 ; \mathrm{N}, 3.9 . \mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{5}$ requires M^{+}, 341.1263; C, $66.8 ; \mathrm{H}, 5.6 ; \mathrm{N}, 4.1 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3423,2931,1587$, $1468,1453,1396,1310,1261,1221$ and $1094 ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right]$ 7.90 (br s, $1 \mathrm{H}, \mathrm{OH}$), $7.35(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 4.08(\mathrm{t}, J 8.1$, $2 \mathrm{H}, 2-\mathrm{H}$), 3.96 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$), 3.91 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$ and $2.70(\mathrm{t}, J 8.1,2 \mathrm{H}, 3-$ $\mathrm{H}) ; \delta_{\mathrm{C}} 165.1,150.4,150.3,149.8,146.7,146.1,134.4,129.3$, $126.4,123.8,122.0,109.4,106.0,61.1,61.0,60.7,55.8,48.8$ and 18.2; m/z (70 eV) (\%) $341(100)\left(\mathrm{M}^{+}\right)$and $326(32)\left(\mathrm{M}^{+}\right.$ $-\mathrm{CH}_{3}$).
Concentration of the fractions containing the less-mobile component afforded 1-(3^{\prime}-hydroxy-4'-methoxyphenyl)-5,6,7-trimethoxy-3,4-dihydroisoquinoline $30(0.1 \mathrm{~g}, 6 \%$) as a clear, colourless oil ($R_{\mathrm{f}} 0.2$ in 3:97 ethanol-dichloromethane) (Found: $\mathrm{M}^{+}, 343.1424 . \mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{5}$ requires $M^{+}, 343.1420$); $v_{\text {max }}(\mathrm{NaCl}) / \mathrm{cm}^{-1} 3357,2939,2838,1561,1486,1453,1408$, 1345 and $1118 ; \delta_{\mathrm{H}} 7.23\left(\mathrm{~d}, J 2.1,1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 7.10(\mathrm{dd}, J 8.3$ and $\left.2.1,1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 6.88\left(\mathrm{~d}, J 8.3,1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 6.70(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{H}), 3.95$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.75$ $(\mathrm{m}, 2 \mathrm{H}, 3-\mathrm{H}), 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$ and $2.72(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H})(\mathrm{OH}$ not observed); δ_{C} 166.4, 151.3, 149.7, 148.1, 145.6, 144.5, 131.9, $125.6,124.3,121.0,115.6,110.2,108.8,61.0,60.9(5), 56.3,55.9$, 47.0 and $19.3 ; m / z(70 \mathrm{eV})(\%) 343(69)\left(\mathrm{M}^{+}\right), 342(100)\left(\mathrm{M}^{+}-\right.$ $\mathrm{H})$ and 328 (17) $\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right)$.

Dehydrogenation of 4,5,6,8-Tetramethoxy-2,3-dihydroindeno-[1,2,3-ij]isoquinolin-9-ol 29. Formation of 4,5,6,8-Tetra-
methoxyindeno[1,2,3-ij]isoquinolin-9-ol 7.-A solution of dihydroazafluoranthene 29 ($20 \mathrm{mg}, 0.06 \mathrm{mmol}$) in chlorobenzene ($15 \mathrm{~cm}^{3}$) containing $\mathrm{HCl}\left(10 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$ aqueous solution; 1 drop) was heated at reflux for 2 h while being maintained under a nitrogen atmosphere. The cooled reaction mixture was concentrated under reduced pressure and $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR analysis of the residue (20 mg) established that it consisted of a ca. 5:1 mixture of compounds 29 and 7 (100% combined yield).

Single-Crystal X-Ray Diffraction Analysis of Compound 29. Crystal Data.- $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{5}, M=341.4$, monoclinic space group $P 2_{1} / c, a=12.294(1), b=8.522(1), c=16.129(2) \AA$, $\beta=90.54(1)^{\circ}, V=1689.8(6) \AA^{3}, Z=4, D_{\mathrm{m}}=1.345(5), D_{\mathrm{c}}=$ $1.342 \mathrm{~g} \mathrm{~cm}^{-3}, \mu(\mathrm{Cu}-\mathrm{K} \alpha)=7.68 \mathrm{~cm}^{-1}$.

Data collection and processing. Accurate unit cell parameters by least-squares refinement on diffractometer angles for 25 automatically centred reflections. Intensities were recorded for 2656 unique reflections by an $\omega-2 \theta$ scan, 2θ scan rate $2^{\circ} \mathrm{min}^{-1}$, scan range $(\Delta \omega) 1.2^{\circ}+0.5^{\circ} \tan \theta$, to a $2 \theta_{\max }=120^{\circ}$ on a Rigaku AFC diffractometer with graphite monochromatised $\mathrm{Cu}-\mathrm{K} \alpha$ radiation $(\lambda=1.5418 \AA)$ at $291(1) \mathrm{K}$. There was no crystal decay. Analytical absorption corrections were made (max., min. transmission factors $0.952,0.875$).

Structure analysis and refinement. Direct methods with SHELX76. ${ }^{13}$ Full-matrix least squares refinement with all nonhydrogen atoms anisotropic converged at $R=0.059, R_{\mathrm{w}}=$ $0.080, S=1.343$ (238 parameters varied) for 1398 data ($l>3 \sigma l$). Apart from the hydroxyl Hatom which was located on the difference map, the H atoms were included at calculated positions; the methyl H atoms were given a common isotropic temperature factor and the others were given individual isotropic temperature factors. The function minimised in the refinement was $w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$ with $w=\left(\sigma\left|F_{\mathrm{o}}\right|^{2}+\right.$ $\left.0.0025 \mid F_{\mathrm{o}^{2}}\right)^{-1}$. An isotropic extinction correction of the form $F_{\mathrm{c}}=F\left(1-1.20 \times 10^{-6} F^{2} / \sin \theta\right)$ was applied to the calculated structure amplitudes. At convergence $(\Delta \rho)_{\text {max }},(\Delta \rho)_{\text {min }}$ were $+0.27,-0.38 \mathrm{e} \AA^{3}$. The intensities were corrected for Lorentz and polarisation effects. The absorption corrections and refinements were made with SHELX 76^{13} on a VAX8800 computer. Atomic scattering factors and anomalous dispersion factors applied to the non-H atoms were those supplied in SHELX76. ${ }^{13}$ Fig. 1 was prepared from the output of ORTEP II ${ }^{14}$ Atomic co-ordinates, bond lengths and angles, anisotropic thermal parameters with their estimated standard deviations for the non-hydrogen atoms, have been deposited at the Cambridge Crystallographic Data Centre.*

[^1]
Acknowledgements

We thank the Australian Research Council for generous financial support and Professors M. P. Cava and V. Snieckus for providing authentic samples of isoimelutine and imelutine respectively. Drs Richard Hartshorn and John Tsanaktsidis are thanked forhelpfuldiscussions and technicalassistance.N.K.I. is the grateful recipient of an Australian Post-graduate Research Award.

References

1 For Part 1 see M. G. Banwell, A. Bonadio, K. A. Turner, N. K. Ireland and M. F. Mackay, Aust. J. Chem., 1993, 46, 325.
2 M. G. Banwell, J. N. Lambert, M. F. Mackay and R. J. Greenwood, J. Chem. Soc., Chem. Commun., 1992, 974.

3 M. G. Banwell and M. P. Collis, J. Chem. Soc., Chem. Commun., 1991, 1343.
4 M. D. Menachery and M. P. Cava, Heterocycles, 1980, 14, 943.
5 J. V. Silverton, C. Kabuto, K. T. Buck and M. P. Cava, J. Am. Chem. Soc., 1977, 99, 6708.
6 D. A. Evans, D. J. Hart, P. M. Koelsch and P. A. Cain, Pure Appl. Chem., 1979, 51, 1285.
7 (a) M. P. Cava, K. T. Buck and A. I. daRocha, J. Am. Chem. Soc., 1972, 94, 5931 (rufescine 9 and imelutine 11); (b) M. D. Menachery, M. P. Cava, K. T. Buck and W. J. Prinz, Heterocycles, 1982, 19, 2255 (norrufescine 10); (c) R. Huls, J. Gaspers and R. Warin, Bull. Soc. R. Sci. Liege, 1976, 45, 40 (triclisine 12); (d) M. D. Menachery, C. D. Muthler and K. T. Buck, J. Nat. Prod., 1987, 50, 726 (telitoxine 13); for a pertinent review see (e) K. T. Buck in The Alkaloids, ed. A. Brossi, Academic Press, New York, 1984, vol. 23, pp. 301-325. For alternate routes to the azafluoranthene skeleton see $(f) \mathrm{H}$. A. Patel and D. B. MacLean, Can. J. Chem., 1983, 61, 7; (g) D. L. Boger and C. E. Brotherton, J. Org. Chem., 1984, 49, 4050; (h) B. Zhao and V. Snieckus, Tetrahedron Lett., 1991, 32, 5277.
8 E. McDonald and A. Suksamrarn, J. Chem. Soc., Perkin Trans. 1, 1978, 440.
9 A. Schönberg and A. Mustafa, J. Chem. Soc., 1946, 746.
10 A. B. Smith and R. K. Dieter, Tetrahedron, 1981, 37, 2407.
11 M. G. Banwell, J. M. Cameron, M. Corbett, J. R. Dupuche, E. Hamel, J. N. Lambert, C. M. Lin and M. F. Mackay, Aust. J. Chem., 1992, 45, 1967.
12 M. G. Banwell, J. N. Lambert, M. Corbett, R. J. Greenwood, J. M. Gulbis and M. F. Mackay, J. Chem. Soc., Perkin Trans. I, 1992, 1415.

13 G. M. Sheldrick, SHELX76, Program for Crystal Structure Determination, University of Cambridge; Cambridge, U.K., 1976
14 C. K. Johnson, ORTEP II. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, U.S.A., 1976.

Paper 3/01095C
Received 24th February 1993
Accepted 7th April 1993

[^0]: * Attempts to acquire satisfactory microanalytical data on this compound have been unsuccessful. On the basis that these difficulties might result from contamination of the cation by counterions other than chloride ion, purification of compound 8 using ion-exchange column chromatography was undertaken. However, no improvement in the combustion analysis results were obtained.

[^1]: * For details of the crystallographic deposition scheme, see Instructions for Authors (1993), J. Chem. Soc., Perkin Trans. I, 1993, Issue 1.

